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Graph of the matrix over the tropic semi�eld

Rmax = {ε := −∞} ∪ R, a⊕ b := max{a,b}, a⊗ b := a + b

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

...
...

an1 an2 an3 · · · ann



Graph G(A)

Path p from i0 to ik of length

L(p) := k
The weight of the path

W (P) := ai1 i0 + ai2 i1 + ai3 i2 + · · ·+ aik ik−1

= ai1 i0 ⊗ ai2 i1 ⊗ ai3 i2 ⊗ · · · ⊗ aik ik−1
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Geometric interpretation of matrix degrees

Lemma

The element bk
ji of the matrix Ak is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ε is there is no such a path).

Proof by induction on k . For k = 1, the claim is evident. Let it be true for some k .
Then we have

bk+1
ji = [A⊗ Ak ]ji = ⊕n

r=1ajr ⊗ ak
ri = max

r=1,...,n

[
ajr + ak

ri
]

= max
r :r→j is an edge

there is a k-path from i to r

the weight of the compound (k + 1)-path︷ ︸︸ ︷[
ajr + ak

ri︸︷︷︸
the maximal weight of the k-path from i to r

]

Corollary

The element ck
ji of the matrix E ⊕ A⊕ A2 ⊕ · · · ⊕ Ak is the maximal weight of a

path in G(A) that goes from node i to j and whose length ≤ k (:= ε is there is no
such a path).
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Cycles; the mean weight of the cycle

A cycle C is a path in G(A) that starts and ends at the same node.

The mean weight of the cycle C is the ratio M(C) := W (C)
L(C)

(the weight

divided by the length, i.e., the weight per unit length).

The cycle is said to be simple if it contains no other cycle ⇔ apart from the
start and end nodes, there are no other repeating nodes in the cycle

There are only �nitely many simple cycles

The maximum cyclic mean is de�ned to be

m(A) := max
C is a simple cycle

M(C) (:= ε if the exists no simple cycle)

Lemma

For k = 1 the claim is evident. Let it be true for some k and let C be a cycle whose
length ≤ k + 1. If C is simple, the inequality is correct. If not, C contains another
cycle C− and is a concatenation C = γ1 ∗ C− ∗ γ2, where γ1 ∗ γ2 is one more cycle
C+. Clearly, L(C±) ≤ k and L(C) = L(C−) + L(C+),W (C) = W (C−) + W (C+)

M(C) =
W (C−) + W (C+)

L(C−) + L(C+)
=
∑
ς=±

L(Cς)
L(C−) + L(C+)

W (Cς)
L(Cς)

≤ m(A)
∑
ς=±

L(Cς)
L(C−) + L(C+)

.
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Normalized matrices

De�nition

A matrix A ∈ Rn×n
max is said to be normalized if its maximum cyclic mean is

nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) 6= ε, there exists a unique strictly normalized
matrix An such that A = m(A)⊗ An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

Theorem

For any normalized matrix A ∈ Rn×n
max and any s = 0, 1, . . .,

A∗ := E ⊕ A⊕ A2 ⊕ · · · ⊕ An = E ⊕ A⊕ A2 ⊕ · · · ⊕ An ⊕ An+1 ⊕ · · · ⊕ An+s

=: Bs

s = 0 � clear Let the claim be true for some s and bs+1
ji be an element of Bs+1

This is the maximal weight of a path p in G(A) that goes from node i to j and
whose length L(p) ≤ n + s + 1 If L(p) ≤ n, the claim is clear. If L(p) > n, there is a
cycle C inside p. Its weight W (C) ≤ 0 The remainder p− := p \ C, still goes from i
to j, and L(p−) ≤ L(p)− 1 ≤ n + s, W (p) = W (p−) + W (C) ≤ W (p−)
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Lemma

For any square matrix A with m(A) 6= ε, there exists a unique strictly normalized
matrix An such that A = m(A)⊗ An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).
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s = 0 � clear Let the claim be true for some s and bs+1
ji be an element of Bs+1

This is the maximal weight of a path p in G(A) that goes from node i to j and
whose length L(p) ≤ n + s + 1 If L(p) ≤ n, the claim is clear. If L(p) > n, there is a
cycle C inside p. Its weight W (C) ≤ 0

The remainder p− := p \ C, still goes from i
to j, and L(p−) ≤ L(p)− 1 ≤ n + s, W (p) = W (p−) + W (C) ≤ W (p−)
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Corollaries on normalized matices

Theorem

For any normalized matrix A ∈ Rn×n
max and any s = 0, 1, . . .,

A∗ := E ⊕ A⊕ A2 ⊕ · · · ⊕ An = E ⊕ A⊕ A2 ⊕ · · · ⊕ An ⊕ An+1 ⊕ · · · ⊕ An+s

=: Bs

A+ := A⊗ A∗ = A∗ ⊗ A = A⊕ A2 ⊕ A3 ⊕ · · · ⊕ An+1

E ⊕ A+ = E ⊕ A⊗ A∗ = E ⊕ A⊕ A2 ⊕ A3 ⊕ · · · ⊕ An+1 = A∗

for any b ∈ Rn
max, the element x := A∗b is a solution for the equation

x = b ⊕ Ax .
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Spectral theory of square matrices

De�nition

An element λ ∈ R is said to be an eigenvalue of a square matrix A ∈ Rn×n
max i� there

exists a nonzero x ∈ Rn
max (an associated eigenvector) such that

Ax = λx ⇔ A⊗ x = λ⊗ x .

x is an eigenvector and ρ ∈ R⇒ ρ⊗ x is an eigenvector

Corollary: there exists an eigenvector such that

i ∈ supp(x) := {j : xj 6= −∞} ⇒ xi ≥ 0

Ak x = λk x ,
[
E ⊕ A⊕ A2 ⊕ · · · ⊕ Ak ]x = e ⊕ λ⊕ λ2 ⊕ · · · ⊕ λk︸ ︷︷ ︸

a number

x

Corollary: if the graph G(A) is strongly connected, then

supp(x) = [1 : n]

there exists an eigenvector such that xi > 0 ∀i
if in addition aji ≥ 0 whenever aji > −∞, then λ ≥ 0

x determines a regular schedule with departures every λ units of time
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Existence:

A = m(A)⊗ A, where A is strictly normalized m(A) = 0 = e

A+ = A⊕ A2 ⊕ A3 ⊕ · · · ⊕ An+1 and there is a simple cycle C in G(A) with W (C) = 0

⇓

there exists i such that A+
ii = e = 0

A∗ = E ⊕ A+ ⇒ A∗·i = A+
·i =: x is nonzero

A+ = AA∗ ⇒ A+
·i = AA∗·i ⇔ Ax = x

⇓
m(A)⊗ x = m(A)⊗ A⊗ x = A⊗ x = Ax .
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ
let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
λ⊗ xi1 = ai1 i2 ⊗ xi2
λ⊗ xi2 = ai2 i3 ⊗ xi3
...
λ⊗ xik−1 = aik−1 ik ⊗ xik

∣∣∣∣∣∣∣∣∣∣∣
⇒

λk ⊗ xi0 ⊗ xi1 ⊗ · · · ⊗ xik−1︸ ︷︷ ︸
χ

= ai0 i1 ⊗ ai1 i2 ⊗ · · · ⊗ aik−1 ik
⊗xi1 ⊗ xi2 ⊗ · · · ⊗ xik−1 ⊗ xik
=
[
ai0 i1 + ai1 i2 + · · ·+ aik−1 ik

]
+ χ

⇒ the weight of the cycle W (C) = kλ⇒ M(C) = λ⇒ m(A) ≥ λ
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ
let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}
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by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
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=
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ

let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
λ⊗ xi1 = ai1 i2 ⊗ xi2
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...
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⊗xi1 ⊗ xi2 ⊗ · · · ⊗ xik−1 ⊗ xik
=
[
ai0 i1 + ai1 i2 + · · ·+ aik−1 ik

]
+ χ

⇒ the weight of the cycle W (C) = kλ⇒ M(C) = λ⇒ m(A) ≥ λ
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ
let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
λ⊗ xi1 = ai1 i2 ⊗ xi2
λ⊗ xi2 = ai2 i3 ⊗ xi3
...
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ
let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
λ⊗ xi1 = ai1 i2 ⊗ xi2
λ⊗ xi2 = ai2 i3 ⊗ xi3
...
λ⊗ xik−1 = aik−1 ik ⊗ xik
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⇒

λk ⊗ xi0 ⊗ xi1 ⊗ · · · ⊗ xik−1︸ ︷︷ ︸
χ

= ai0 i1 ⊗ ai1 i2 ⊗ · · · ⊗ aik−1 ik
⊗xi1 ⊗ xi2 ⊗ · · · ⊗ xik−1 ⊗ xik
=
[
ai0 i1 + ai1 i2 + · · ·+ aik−1 ik

]
+ χ

⇒ the weight of the cycle W (C) = kλ⇒ M(C) = λ⇒ m(A) ≥ λ
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ
let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
λ⊗ xi1 = ai1 i2 ⊗ xi2
λ⊗ xi2 = ai2 i3 ⊗ xi3
...
λ⊗ xik−1 = aik−1 ik ⊗ xik

∣∣∣∣∣∣∣∣∣∣∣

⇒

λk ⊗ xi0 ⊗ xi1 ⊗ · · · ⊗ xik−1︸ ︷︷ ︸
χ

= ai0 i1 ⊗ ai1 i2 ⊗ · · · ⊗ aik−1 ik
⊗xi1 ⊗ xi2 ⊗ · · · ⊗ xik−1 ⊗ xik
=
[
ai0 i1 + ai1 i2 + · · ·+ aik−1 ik

]
+ χ

⇒ the weight of the cycle W (C) = kλ⇒ M(C) = λ⇒ m(A) ≥ λ
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ
let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
λ⊗ xi1 = ai1 i2 ⊗ xi2
λ⊗ xi2 = ai2 i3 ⊗ xi3
...
λ⊗ xik−1 = aik−1 ik ⊗ xik

∣∣∣∣∣∣∣∣∣∣∣
⇒

λk ⊗ xi0 ⊗ xi1 ⊗ · · · ⊗ xik−1︸ ︷︷ ︸
χ

= ai0 i1 ⊗ ai1 i2 ⊗ · · · ⊗ aik−1 ik
⊗xi1 ⊗ xi2 ⊗ · · · ⊗ xik−1 ⊗ xik
=
[
ai0 i1 + ai1 i2 + · · ·+ aik−1 ik

]
+ χ

⇒ the weight of the cycle W (C) = kλ⇒ M(C) = λ⇒ m(A) ≥ λ
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ
let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
λ⊗ xi1 = ai1 i2 ⊗ xi2
λ⊗ xi2 = ai2 i3 ⊗ xi3
...
λ⊗ xik−1 = aik−1 ik ⊗ xik

∣∣∣∣∣∣∣∣∣∣∣
⇒

λk ⊗ xi0 ⊗ xi1 ⊗ · · · ⊗ xik−1︸ ︷︷ ︸
χ

= ai0 i1 ⊗ ai1 i2 ⊗ · · · ⊗ aik−1 ik
⊗xi1 ⊗ xi2 ⊗ · · · ⊗ xik−1 ⊗ xik
=
[
ai0 i1 + ai1 i2 + · · ·+ aik−1 ik

]
+ χ

⇒ the weight of the cycle W (C) = kλ

⇒ M(C) = λ⇒ m(A) ≥ λ
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ
let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
λ⊗ xi1 = ai1 i2 ⊗ xi2
λ⊗ xi2 = ai2 i3 ⊗ xi3
...
λ⊗ xik−1 = aik−1 ik ⊗ xik

∣∣∣∣∣∣∣∣∣∣∣
⇒

λk ⊗ xi0 ⊗ xi1 ⊗ · · · ⊗ xik−1︸ ︷︷ ︸
χ

= ai0 i1 ⊗ ai1 i2 ⊗ · · · ⊗ aik−1 ik
⊗xi1 ⊗ xi2 ⊗ · · · ⊗ xik−1 ⊗ xik
=
[
ai0 i1 + ai1 i2 + · · ·+ aik−1 ik

]
+ χ

⇒ the weight of the cycle W (C) = kλ⇒ M(C) = λ

⇒ m(A) ≥ λ
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Existence and uniqueness of an eigenvalue

Theorem

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax = λx ⇒ Ak x = λk x ⇒ ak
ii + xi ≤ kλ+ xi ⇒ ak

ii ≤ kλ

⇒ the weight of any cycle of length k does not exceed kλ

⇒ its mean weight does not exceed λ⇒ m(A) ≤ λ
let us pick i0 there exists i1 such that λ⊗ xi0 = ai0 i1 ⊗ xi1

there exists i2 such that λ⊗ xi1 = ai1 i2 ⊗ xi2

by continuing likewise, we get a simple cycle C = {i0 ←[ i1 ←[ · · · ← [ ik−1 ← [ ik = i0}

such that

λ⊗ xi0 = ai0 i1 ⊗ xi1
λ⊗ xi1 = ai1 i2 ⊗ xi2
λ⊗ xi2 = ai2 i3 ⊗ xi3
...
λ⊗ xik−1 = aik−1 ik ⊗ xik

∣∣∣∣∣∣∣∣∣∣∣
⇒

λk ⊗ xi0 ⊗ xi1 ⊗ · · · ⊗ xik−1︸ ︷︷ ︸
χ

= ai0 i1 ⊗ ai1 i2 ⊗ · · · ⊗ aik−1 ik
⊗xi1 ⊗ xi2 ⊗ · · · ⊗ xik−1 ⊗ xik
=
[
ai0 i1 + ai1 i2 + · · ·+ aik−1 ik

]
+ χ

⇒ the weight of the cycle W (C) = kλ⇒ M(C) = λ⇒ m(A) ≥ λ
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