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@ Rpax = {e:= —00} UR,

a® b := max{a, b},

ab:=a+b

«O>» «BF>» «E»>» «E>» A20N &4



Graph of the matrix over the tropic semifield

@ Rpax ={e:=—00}UR, a®b:=max{a,b}, a®b:=a+b

aify a2 a3 -+ ain
axy dpp dp3 - dop
A= | @1 dsx2 d - dasn
an1 an2 danpz - ann
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Graph of the matrix over the tropic semifield

@ Rpax ={e:=—00}UR, a®b:=max{a,b}, a®b:=a+b

Graph G(A)
8 Gz &g cr 8 numbers r = 1 n
[ Nav) > " r = DI
a1 do2 @3 -+ dop
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ani d8p2 anz - ann

is weigted by aj;
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Graph of the matrix over the tropic semifield

@ Rpax ={e:=—00}UR, a®b:=max{a,b}, a®b:=a+b

Graph G(A)
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no edge iff ay; = ¢ = —o0
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ani d8p2 anz - ann

is weigted by aj;
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Graph of the matrix over the tropic semifield

@ Rpax ={e:=—00}UR, a®b:=max{a,b}, a®b:=a+b

Graph G(A)
apn a2 a3 - a
n e~ numbers r =1,...n
a1 do2 @3 -+ dop
L]
A— | @1 as das -+ dsp o !
no edge iff ap; = ¢ = —x
a. a. a. : a. j ‘»;'/%'
m n2 n3 nn is weigted by aj;
Qivio Qini, Qisig Qipin o Path p from iy to ik of length
'/—\/—\./—\. . ./—\.. L(p) = k
10 21 12 1k
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Graph of the matrix over the tropic semifield

@ Rpax = {e := —o0} UR,
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a®b:=max{a,b}, a®b:=a+b

ain
azn
asp

ann

23

Graph G(A)
e~ numbers r =1,...n
"
no edge iff ay; = ¢ = —x
J p‘@

is weigted by aj;

e Path p from fy to ik of length
L(p) := k
o The weight of the path

W(P) := aijy + @i + @i, + -+ + @it
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Graph of the matrix over the tropic semifield
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Graph G(A)
e~ numbers r =1,...n
"
no edge iff ap; = ¢ x
J p‘@

is weigted by aj;

e Path p from fy to ik of length
L(p) := k
o The weight of the path

W(P) := aijy + @i + @i, + -+ + @it

= 8jjjy @ jpiy @ gy @ +++ & i,
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Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix A is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).
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Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix A is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).

Proof by induction on k.
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Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix A is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).

Proof by induction on k. For k = 1, the claim is evident.
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Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix A is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).

Proof by induction on k. For k = 1, the claim is evident. Let it be true for some k.
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Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix A is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).

Proof by induction on k. For k = 1, the claim is evident. Let it be true for some k.
Then we have

bt = [A® AY;
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Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix A is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).

Proof by induction on k. For k = 1, the claim is evident. Let it be true for some k.
Then we have

bt = [A® AN = o8 @ &
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Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix A is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).

Proof by induction on k. For k = 1, the claim is evident. Let it be true for some k.
Then we have

b = 1Ae Ay = o a @ af = max [a+ a]

s
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Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix A is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).

Proof by induction on k. For k = 1, the claim is evident. Let it be true for some k.
Then we have

b = 1Ae Ay = o a @ af = max [a+ a]

s

= “max
rir—j is an edge
there is a k-path from i to r

CeTH ¢ oXUAAHMEM: PEryNsSpHbIE ONTHMABHAIE PACHHCAHI



Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix A is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).

Proof by induction on k. For k = 1, the claim is evident. Let it be true for some k.
Then we have
b = 1Ae Ay = o a @ af = max [a+ a]

the weight of the compound (k + 1)-path

K
- max o+ ]
rir—jis an edge ~~
there is a k-path from i to r the maximal weight of the k-path from i to r

CeTH ¢ oXUAAHMEM: PEryNsSpHbIE ONTHMABHAIE PACHHCAHI



Geometric interpretation of matrix degrees

The element b/’.l‘. of the matrix AK is the maximal weight of a path in G(A) that goes

from node i to j and has a length of k (:= ¢ is there is no such a path).

Proof by induction on k. For k = 1, the claim is evident. Let it be true for some k.
Then we have
b = 1Ae Ay = o a @ af = max [a+ a]

the weight of the compound (k + 1)-path

K
- max fay + ]
rir—jis an edge ~~
there is a k-path from i to r the maximal weight of the k-path from i to r

The element C}; of the matrix E®A® A2 @ - -- @ AK is the maximal weight of a

path in G(A) that goes from node i to j and whose length < k (:= ¢ is there is no
such a path).
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@ A cycle Cis a path in §(A) that starts and ends at the same node.
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.

@ The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.

@ The mean weight of the cycle C is the ratio M(C) := % (the weight
divided by the length, i.e., the weight per unit length).

@ The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.

@ The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).

The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

@ There are only finitely many simple cycles
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.

@ The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).

@ The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

@ There are only finitely many simple cycles
@ The maximum cyclic mean is defined to be

m(A) := max M(C) (:= e if the exists no simple cycle)

Cis a simple cycle
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Cycles; the mean weight of the cycle

A cycle C is a path in G(A) that starts and ends at the same node.

The mean weight of the cycle C is the ratio M(C) := % (the weight
divided by the length, i.e., the weight per unit length).

The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

There are only finitely many simple cycles

The maximum cyclic mean is defined to be

m(A) := max M(C) (:= e if the exists no simple cycle)

Cis a simple cycle

m(A) := oiMax M(C)

is a cycle
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Cycles; the mean weight of the cycle

A cycle C is a path in G(A) that starts and ends at the same node.

The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).

The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

There are only finitely many simple cycles
The maximum cyclic mean is defined to be

m(A) := max M(C) (:= e if the exists no simple cycle)

Cis a simple cycle

m(A) >

M(C) vk

max
Cis a cycle with a length of <k
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.
@ The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).

@ The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

@ There are only finitely many simple cycles
@ The maximum cyclic mean is defined to be

m(A) := max M(C) (:= e if the exists no simple cycle)

Cis a simple cycle

m(A) >

M(C) vk

max
Cis a cycle with a length of <k

For k = 1 the claim is evident.
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.
@ The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).

@ The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

@ There are only finitely many simple cycles
@ The maximum cyclic mean is defined to be

m(A) := max M(C) (:= e if the exists no simple cycle)

Cis a simple cycle

m(A) >

M(C) vk

max
Cis a cycle with a length of <k

For k = 1 the claim is evident. Let it be true for some k and let C be a cycle whose
length < k+ 1.
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.
@ The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).

@ The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

@ There are only finitely many simple cycles
@ The maximum cyclic mean is defined to be

m(A) := max M(C) (:= e if the exists no simple cycle)

Cis a simple cycle

m(A) >

M(C) vk

max
Cis a cycle with a length of <k

For k = 1 the claim is evident. Let it be true for some k and let C be a cycle whose
length < k + 1. If C is simple, the inequality is correct.
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.
@ The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).

@ The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

@ There are only finitely many simple cycles
@ The maximum cyclic mean is defined to be

m(A) := max M(C) (:= e if the exists no simple cycle)

Cis a simple cycle

m(A) >

M(C)  Vk

max
Cis a cycle with a length of <k

For k = 1 the claim is evident. Let it be true for some k and let C be a cycle whose
length < k + 1. If C is simple, the inequality is correct. If not, C contains another
cycle C_ and is a concatenation C = ¢ * C_ * 2, where 1 * 7o is one more cycle

Cs.
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.
@ The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).

@ The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

@ There are only finitely many simple cycles
@ The maximum cyclic mean is defined to be

m(A) := max M(C) (:= e if the exists no simple cycle)

Cis a simple cycle

m(A) >

M(C)  Vk

max
Cis a cycle with a length of <k

For k = 1 the claim is evident. Let it be true for some k and let C be a cycle whose
length < k + 1. If C is simple, the inequality is correct. If not, C contains another
cycle C_ and is a concatenation C = ¢ * C_ * 2, where 1 * 7o is one more cycle
C;. Clearly, L(C+) < k and L(C) = L(C-) + L(Cy), W(C) = W(C-) + W(Cy)
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Cycles; the mean weight of the cycle

@ A cycle Cis a path in §(A) that starts and ends at the same node.
@ The mean weight of the cycle C is the ratio M(C) := % (the weight

divided by the length, i.e., the weight per unit length).

@ The cycle is said to be simple if it contains no other cycle < apart from the
start and end nodes, there are no other repeating nodes in the cycle

@ There are only finitely many simple cycles
@ The maximum cyclic mean is defined to be

m(A) := max M(C) (:= e if the exists no simple cycle)

Cis a simple cycle

m(A) >

M(C)  Vk

max
Cis a cycle with a length of <k

For k = 1 the claim is evident. Let it be true for some k and let C be a cycle whose
length < k + 1. If C is simple, the inequality is correct. If not, C contains another
cycle C_ and is a concatenation C = ¢ * C_ * 2, where 1 * 7o is one more cycle
C;. Clearly, L(C+) < k and L(C) = L(C-) + L(Cy), W(C) = W(C-) + W(Cy)

W(C-)+ W(C+) _ ) L(C) W(C) L(C)

L(C)+L(C.) e+ e Loy = "2 we e

M(C) =
s==%
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is
nonpositive, and strictly normalized if this mean equals 0 = e.
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is
nonpositive, and strictly normalized if this mean equals 0 = e.

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is

nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

Theorem

| A\

For any normalized matrix A € R and any s =0,1,.. .,

A =EDADA D - A =Ea0AdA e - - A A @... 0 AMTS
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is

nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

Theorem

| A\

For any normalized matrix A € R and any s =0,1,.. .,

A =EDADA D oA =EdAcAa - - aA A @...¢ A™S = B,
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is

nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

Theorem

| A\

For any normalized matrix A € R and any s =0,1,.. .,

A =EDADA D oA =EdAcAa - - aA A @...¢ A™S = B,

s =0 — clear
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is

nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

Theorem

| A\

For any normalized matrix A € R and any s =0,1,.. .,

A =EDADA D oA =EdAcAa - - aA A @...¢ A™S = B,

s =0 — clear Let the claim be true for some s and bﬁ“ be an element of Bg 4
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is
nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

| A\

Theorem
For any normalized matrix A € R and any s =0,1,.. .,

A =EDADA D oA =EdAcAa - - aA A @...¢ A™S = B,

A

s =0 — clear Let the claim be true for some s and bﬁ“ be an element of Bg 4

This is the maximal weight of a path p in G(A) that goes from node i to j and
whose length L(p) < n+s+1
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is
nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

| A\

Theorem
For any normalized matrix A € R and any s =0,1,.. .,

A =EDADA D oA =EdAcAa - - aA A @...¢ A™S = B,

A

s =0 — clear Let the claim be true for some s and bﬁ“ be an element of Bg 4

This is the maximal weight of a path p in G(A) that goes from node i to j and
whose length L(p) < n+ s+ 11If L(p) < n, the claim is clear.
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is

nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

| A\

Theorem
For any normalized matrix A € R and any s =0,1,.. .,

A =EDADA D oA =EdAcAa - - aA A @...¢ A™S = B,

A

s =0 — clear Let the claim be true for some s and bﬁ“ be an element of Bg 4

This is the maximal weight of a path p in G(A) that goes from node i to j and
whose length L(p) < n+ s+ 11If L(p) < n, the claim is clear. If L(p) > n, there is a
cycle C inside p.
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is

nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

| A\

Theorem
For any normalized matrix A € R and any s =0,1,.. .,

A =EDADA D oA =EdAcAa - - aA A @...¢ A™S = B,

A

s =0 — clear Let the claim be true for some s and bﬁ“ be an element of Bg 4

This is the maximal weight of a path p in G(A) that goes from node i to j and
whose length L(p) < n+ s+ 11If L(p) < n, the claim is clear. If L(p) > n, there is a
cycle C inside p. Its weight W(C) <0
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Normalized matrices

A matrix A € R1%Y is said to be normalized if its maximum cyclic mean is
nonpositive, and strictly normalized if this mean equals 0 = e.

Lemma

For any square matrix A with m(A) # e, there exists a unique strictly normalized
matrix Ap such that A= m(A) ® An. Its elements are the eponymous elements of A
minus (in the usual sense) m(A).

Theorem

| A\

For any normalized matrix A € R and any s =0,1,.. .,

A =EDADA D oA =EdAcAa - - aA A @...¢ A™S = B,

A

s =0 — clear Let the claim be true for some s and bﬁ“ be an element of Bg, 4
This is the maximal weight of a path p in G(A) that goes from node i to j and
whose length L(p) < n+ s+ 11If L(p) < n, the claim is clear. If L(p) > n, there is a
cycle C inside p. Its weight W(C) < 0 The remainder p_ := p\ C, still goes from i
t0 j, and L(p_) < L(p) — 1< n+ s, W(p) — W(p_) + W(C) < W(p_)
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Corollaries on normalized matices

X

For any normalized matrix A € R5" and any s = 0,1, .. .,

A" —EDADAD DA =E0ADA D ---dA A ... 0 A™S
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Corollaries on normalized matices

X

For any normalized matrix A € R5" and any s = 0,1, .. .,

A" —EDADAD DA =E0ADA D ---dA A ... 0 A™S

AT =AQA* =A " QA=A AR g . oA
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Corollaries on normalized matices

X

For any normalized matrix A € R5" and any s = 0,1, .. .,

A" —EDADAD DA =E0ADA D ---dA A ... 0 A™S

AT =AQA* =A " QA=A AR g . oA
EGAT=E®ARQA*
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Corollaries on normalized matices

X

For any normalized matrix A € R5" and any s = 0,1, .. .,

A" —EQADAD DA =EQADA D - - dA dA @...0 A = Bg

AT =AQA* =A " QA=A AR g . oA
EQAt =E®AQA" =Ed A ARPA D .- A = A
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Corollaries on normalized matices

X

For any normalized matrix A € R5" and any s = 0,1, .. .,

A" —EQADAD DA =EQADA D - - dA dA @...0 A = Bg

At —AQA* = A QA=AG ARG A G- @A™
EaA" —=E0ARA =E0AARSARG - g A™ = A
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Corollaries on normalized matices

X

For any normalized matrix A € R5" and any s = 0,1, .. .,

A" —EQADAD DA =EQADA D - - dA dA @...0 A = Bg

At —AQA* = A QA=AG ARG A G- @A™
EaA" —=E0ARA =E0AARSARG - g A™ = A

n
max>

for any b e R the element x := A*b is a solution for the equation

X =bd Ax.
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Spectral theory of square matrices

An element X € R is said to be an eigenvalue of a square matrix A € R%S iff there

exists a nonzero x € R”?

N . (an associated eigenvector) such that

AX= XX S AR X =AR® X.
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Spectral theory of square matrices

An element X € R is said to be an eigenvalue of a square matrix A € R%S iff there

exists a nonzero x € R”?

N . (an associated eigenvector) such that

AX= XX S AR X =AR® X.

X is an eigenvector and p € R = p ® X is an eigenvector
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Spectral theory of square matrices

An element X € R is said to be an eigenvalue of a square matrix A € R%S iff there

exists a nonzero x € R”?

N . (an associated eigenvector) such that

AX= XX S AR X =AR® X.

X is an eigenvector and p € R = p ® X is an eigenvector
Corollary: there exists an eigenvector such that
i €supp(x):={j: X #—oo}=x2>0
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Spectral theory of square matrices

An element X € R is said to be an eigenvalue of a square matrix A € R%S iff there

exists a nonzero x € R”?

N . (an associated eigenvector) such that

AX= XX S AR X =AR® X.

X is an eigenvector and p € R = p ® X is an eigenvector
Corollary: there exists an eigenvector such that
i €supp(x):={j: X #—oo}=x2>0
Ax=Nx,  [EoAoAa---aAlx=edraXa---oxXx

a number
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Spectral theory of square matrices

An element X € R is said to be an eigenvalue of a square matrix A € R%S iff there

exists a nonzero x € R”?

N . (an associated eigenvector) such that

AX= XX S AR X =AR® X.

X is an eigenvector and p € R = p ® x is an eigenvector
Corollary: there exists an eigenvector such that
i €supp(x):={j: X #—oo}=x2>0
Ax=Nx,  [EoAoAa---aAlx=edraXa---oxXx

a number

Corollary: if the graph G(A) is strongly connected, then
supp(x) = [1: ]
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Spectral theory of square matrices

An element X € R is said to be an eigenvalue of a square matrix A € R%S iff there

exists a nonzero x € R”?

N . (an associated eigenvector) such that

AX= XX S AR X =AR® X.

X is an eigenvector and p € R = p ® x is an eigenvector
Corollary: there exists an eigenvector such that
i €supp(x):={j: X #—oo}=x2>0
Ax=Nx,  [EoAoAa---aAlx=edraXa---oxXx

a number

Corollary: if the graph G(A) is strongly connected, then
supp(x) = [1: ]

there exists an eigenvector such that x; > 0 Vi
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Spectral theory of square matrices

An element X € R is said to be an eigenvalue of a square matrix A € R%S iff there

exists a nonzero x € R”?

N . (an associated eigenvector) such that

AX= XX S AR X =AR® X.

X is an eigenvector and p € R = p ® x is an eigenvector
Corollary: there exists an eigenvector such that
i €supp(x):={j: X #—oo}=x2>0

Ax=Nx,  [EoAoAa---aAlx=edraXa---oxXx

a number
Corollary: if the graph G(A) is strongly connected, then
supp(x) = [1: ]
there exists an eigenvector such that x; > 0 Vi
if in addition &@; > O whenever g; > —oco, then A > 0
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Spectral theory of square matrices

An element X € R is said to be an eigenvalue of a square matrix A € R%S iff there

exists a nonzero x € R”?

N . (an associated eigenvector) such that

AX= XX S AR X =AR® X.

X is an eigenvector and p € R = p ® x is an eigenvector
Corollary: there exists an eigenvector such that
i €supp(x):={j: X #—oo}=x2>0

Ax=Nx,  [EoAoAa---aAlx=edraXa---oxXx

a number
Corollary: if the graph G(A) is strongly connected, then
supp(x) = [1: ]
there exists an eigenvector such that x; > 0 Vi
if in addition &@; > O whenever g; > —oco, then A > 0

X determines a regular schedule with departures every A units of time
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Existence:
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Existence:

A= m(A) ® A, where A is strictly normalized m(A) =0=e
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Existence:
A= m(A) ® A, where A is strictly normalized m(A) =0=e
At =A@ A% ® - ® A" and there is a simple cycle C in G(A) with W(C) =0
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Existence:
A= m(A) ® A, where A is strictly normalized m(A) =0=e
At =A@ A% ® - ® A" and there is a simple cycle C in G(A) with W(C) =0
4

there exists i such that A;T =e=0
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Existence:
A= m(A) ® A, where A is strictly normalized m(A) =0=e
At =A@ A% ® - ® A" and there is a simple cycle C in G(A) with W(C) =0
I
there exists / such that AT =e=0

A*=E® AT = A% :Aﬁ =: X is nonzero
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Existence:
A= m(A) ® A, where A is strictly normalized m(A) =0=e
At =A@ A% ® - ® A" and there is a simple cycle C in G(A) with W(C) =0
I
there exists / such that AT =e=0
A* = E@® AT = A% = AT =: x is nonzero
AT = AA* = AL = AL & Ax =X
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Existence:
A= m(A) ® A, where A is strictly normalized m(A) =0=e
At =A@ A% ® - ® A" and there is a simple cycle C in G(A) with W(C) =0
2
there exists i such that A;T =e=0
A* = E@® AT = A% = AT =: x is nonzero
AT = AA* = AL = AL & Ax =X
2
mA)@x =mA) QAR Xx =AR x = Ax.
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

CeTH ¢ oXUAAHMEM: PEryNSpHBIE ONTHMABHAIE PACHHCAHI



Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k

CeTH ¢ oXUAAHMEM: PEryNSpHBIE ONTHMABHAIE PACHHCAHI



Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k
= the weight of any cycle of length k does not exceed kA
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k
= the weight of any cycle of length k does not exceed kA
= its mean weight does not exceed A = m(A) < A
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k
= the weight of any cycle of length k does not exceed kA
= its mean weight does not exceed A = m(A) < A
let us pick ip there exists iy such that A ® Xx;; = aj,;, ® X;,
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k
= the weight of any cycle of length k does not exceed kA
= its mean weight does not exceed A = m(A) < A
let us pick ip there exists iy such that A ® Xx;; = aj,;, ® X;,

there exists ip such that A ® X;, = aj,j, ® X,
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:
Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k
= the weight of any cycle of length k does not exceed kA
= its mean weight does not exceed A = m(A) < A
let us pick ip there exists iy such that A ® Xx;; = aj,;, ® X;,
there exists ip such that A ® X;, = aj,j, ® X,
by continuing likewise, we get a simple cycle C = {ig <~ iy <= -+ = ik_q1 < ik = o}
A® Xy = jgiy ® Xi
A® Xy = iy, ® X
such that A® Xy = iy @ X

A® Xy = 8jp_qi ® Xy
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:

Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k
= the weight of any cycle of length k does not exceed kA
= its mean weight does not exceed A = m(A) < A
let us pick ip there exists iy such that A ® Xx;; = aj,;, ® X;,
there exists ip such that A ® X;, = aj,j, ® X,

by continuing likewise, we get a simple cycle C = {ig <~ iy <= -+ = ik_q1 < ik = o}

A® Xy = @iy, ® X;, MR X ®@X, ® - ®X,_,
A® Xy = aji, ® X,
such that A® Xy = iy @ X :

= = @8 © - ® 8y
: ®Xjy @ Xjy @ -+ & X & Xj
A® Xi_y = 8jp_yi @ X = [api + @i, + -+ @il +x
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:
Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k
= the weight of any cycle of length k does not exceed kA
= its mean weight does not exceed A = m(A) < A
let us pick ip there exists iy such that A ® Xx;; = aj,;, ® X;,
there exists ip such that A ® X;, = aj,j, ® X,

by continuing likewise, we get a simple cycle C = {ig <~ iy <= -+ = ik_q1 < ik = o}

= = @8 © - ® 8y
: OXjy @ Xy @ -+ @ Xj_y O X
A® Xi_y = 8jp_yi @ X = [api + @i, + -+ @il +x
= the weight of the cycle W(C) = kX

A® Xy = @iy, ® X;, MR X ®@X, ® - ®X,_,
A® Xy = aji, ® X,
such that A® Xy = iy @ X :
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:
Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k
= the weight of any cycle of length k does not exceed kA
= its mean weight does not exceed A = m(A) < A
let us pick ip there exists iy such that A ® Xx;; = aj,;, ® X;,
there exists ip such that A ® X;, = aj,j, ® X,

by continuing likewise, we get a simple cycle C = {ig <~ iy <= -+ = ik_q1 < ik = o}

= = @8 © - ® 8y
: OXjy @ Xy @ -+ @ Xj_y O X
A® Xy = Gjy_yix ® Xig = [api, +ap +- -+ ] +x
= the weight of the cycle W(C) = kA = M(C) = A

A® Xy = @iy, ® X;, MR X ®@X, ® - ®X,_,
A® Xy = aji, ® X,
such that A® Xy = iy @ X :
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Existence and uniqueness of an eigenvalue

Suppose that the graph G(A) is strongly connected. Then there exists an eigenvalue
of A, this eigenvalue is unique and equal to the maximum cyclic mean m(A).

Uniqueness:
Ax =2x = Ax = Mx = a8+ x < kA4 x5 = & <k
= the weight of any cycle of length k does not exceed kA
= its mean weight does not exceed A = m(A) < A
let us pick ip there exists iy such that A ® Xx;; = aj,;, ® X;,
there exists ip such that A ® X;, = aj,j, ® X,

by continuing likewise, we get a simple cycle C = {ig <~ iy <= -+ = ik_q1 < ik = o}

= = @8 © - ® 8y
. OXjy @ Xy @ -+ @ Xj_y O X
A® Xy = Gjy_yix ® Xig = [api, +ap +- -+ ] +x
= the weight of the cycle W(C) = kA = M(C) = XA = m(A) > X\

A® Xy = @iy, ® X;, MR X ®@X, ® - ®X,_,
A® Xy = aji, ® X,
such that A® Xy = iy @ X :
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